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The lactose operon regulation in Escherichia coli is a primary model of phenotypic switching,
reminiscent of cell fate determination in higher organisms. Under conditions of bistability, an
isogenic cell population partitions into two subpopulations, with the operon’s genes turned on or
remaining off. It is generally hypothesized that the final state of a cell depends solely on stochastic
fluctuations of the network’s protein concentrations, particularly on bursts of lactose permease
expression. Nevertheless, the mechanisms underlying the cell switching decision are not fully
understood. We designed a microfluidic system to follow the formation of a transiently bimodal
population within growing microcolonies. The analysis of genealogy and cell history revealed the
existence of pre-disposing factors for switching that are epigenetically inherited. Both the pre-
induction expression stochasticity of the lactose operon repressor LacI and the cellular growth rate
are predictive factors of the cell’s response upon induction, with low LacI concentration and slow
growth correlating with higher switching probability. Thus, stochasticity at the local level of the
network and global physiology are synergistically involved in cell response determination.
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Introduction

The ability of living cells to differentiate underlies the
development of multicellular organisms through cellular
speciation. It was shown that feedback loops often govern
such differentiation processes by maintaining cells in different
states (Becskei et al, 2001; Losick and Desplan, 2008). Such
phenotype switching mechanisms were hypothesized to be
crucial as well for unicellular organisms such as bacteria, to
generate phenotypic diversity as a way to adapt to a randomly
fluctuating environment (Thattai and van Oudenaarden, 2004;
Kussell and Leibler, 2005; Dubnau and Losick, 2006; Raj and
van Oudenaarden, 2008; Veening et al, 2008).

The initiation of differentiation processes that lead to
specific gene expression patterns can be either deterministic
or stochastic. As example of the former, the asymmetric
division of Caulobacter crescentus invariantly produces a
swarmer and a stalked cell with different fates and genetic
expression patterns (Holtzendorff et al, 2004). Similarly, the

distinct chemoreceptor expression levels of the two Caenor-
habditis elegans gustatory neurons are determined by their
lateral position (Johnston et al, 2005). In contrast, numerous
systems exhibit stochastic cell fate determination, such as
generation of photoreceptors in Drosophila melanogaster
(Losick and Desplan, 2008) or competence and sporulation
in Bacillus subtilis (Maamar et al, 2007; Veening et al, 2008).
From a mechanistic perspective, the differentiation process of
cells involves two levels. The local level corresponds to the
functional modules responsible for the cell fate determination
(e.g. intrinsic noise in gene networks) and the global level
relates to the context where the differentiation is achieved
(e.g. environment, physiology, extrinsic noise, etc.).

The lactose utilization network of Escherichia coli is a
paradigm for the study of gene expression regulation and
differentiation (Monod and Jacob, 1961). The genes respon-
sible for lactose uptake and metabolism in E. coli (lacZ, Y, A
coding for the lactose degrading enzyme (b-galactosidase),
permease and transacetylase, respectively) are grouped in a
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single transcriptional unit, the lac operon. The expression of
this operon is regulated by the LacI repressor protein, which
inhibits transcription from the Plac promoter. This inhibition is
relieved by inducers such as allolactose or non-metabolizable
lactose analogues, such as thiomethyl-b-galactoside (TMG).
Early work from Novick and Weiner (1957) showed that when
a clonal population of E. coli is treated with an intermediate
concentration of TMG, two stable subpopulations emerge,
with cells expressing b-galactosidase either at a maximal or a
negligible rate. This bistable behavior has been extensively
studied both experimentally and theoretically ever since
(Carrier and Keasling, 1999; Vilar et al, 2003; Ozbudak et al,
2004; van Hoek and Hogeweg, 2007). It was shown to be
governed by the positive feedback loop in the network: TMG
relieves the repression of the LacY permease, which in turn
allows further TMG uptake. It is generally hypothesized that,
under these conditions, the lactose operon expression state is
determined by stochastic fluctuations of protein expression
(Novick and Weiner, 1957; Ozbudak et al, 2004). In particular,
induction is assumed to rely on a burst of transcription of the
lac operon, leading to an increase in cellular LacY concentra-
tion (Novick and Weiner, 1957; Choi et al, 2008).

Here, we study phenotypic variability in growing, mono-
clonal populations of bacteria under conditions of transient
bimodality of the lactose operon expression. By following
individual cell behavior through successive generations, we
emphasize the epigenetic inheritance of cell fate determinants
and look for pre-induction characteristics that would consti-
tute predictive factors for the cell switching decision. Given the
small number of LacI molecules (around 10) per cell (Müller-
Hill, 1996), its cellular concentration is likely to undergo
strong cell-to-cell variations. These variations may affect the
probability of occurrence and the size of LacY bursts as well as
the size of the minimal LacY burst required for cell induction.
Moreover, as the lactose network is embedded within the
global cellular physiology, in itself subject to substantial cell-
to-cell variations, we further address whether physiological
parameters, such as cellular growth rate variability (Stewart
et al, 2005; Reshes et al, 2008) influence the cell’s switching

ability. Our results, gained from coupling experimental and
modeling approaches, suggest that indeed both the physiolo-
gical state of the cell and its content in repressor constitute
predictive factors of its response upon induction.

Results

Real-time characterization of the lactose operon
expression in a growing microcolony using a
microfluidic device

To follow the expression profile of the lac operon, we used the
sequenced MG1655 E. coli strain, modified to express the
yellow fluorescent protein (YFP) and the cyan fluorescent
protein (CFP) both under the control of the inducible promoter
PLlacO1 (strain LCY1, Figure 1A) (Lutz and Bujard, 1997),
which consists of the lactose operon operator O1 and the PL

promoter of lambda phage (see Supplementary Information
S1). In the absence of any lac inducer, the transcription of the
fluorescence protein genes as well as of the lac operon is
repressed by LacI. Conversely, in the presence of sufficient
inducer concentration, LacI repression is inactivated, allowing
expression of the fluorescence proteins (Supplementary Figure
S1) and the lac operon genes. Thus, levels of both fluorescence
markers represent active LacI concentration, and indirectly,
lactose operon expression.

To observe single cells within growing microcolonies under
controlled conditions that can be changed at will, we
developed a microfluidic device (see Supplementary Informa-
tion S2) where cells are confined to 2D growth between a glass
cover slip and a thin agarose gel layer (Figure 1B; Supplemen-
tary Figure S2). Above the agarose gel, a microfluidic channel
delivers the growth medium by diffusion of soluble com-
pounds through the gel with a time scale of homogenization
o1 min (see Supplementary Information S2.1). This device is
simple to fabricate and to use, potentially compatible with the
use of any species of bacteria as well as other cell types, and
shown here to be effective in studying single-cell responses to
environmental changes.
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Figure 1 Following the lactose operon switch in single cells of growing microcolonies. (A) Genetic network in the strain LCY1. Black lines represent regulatory
interactions, with pointed ends for activation and blunt ends for inhibition; dark green arrows represent protein expression from the genes. (B) Microfluidic device for the
observation of individual cells in a growing population of bacteria under dynamic environmental conditions.
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Real-time follow-up of transient bimodality
in lactose operon expression

Microcolonies originating from a single cell were grown in the
microfluidic device in minimal medium with succinate as a
carbon source and followed by time-lapse microscopy to
obtain phase contrast and fluorescent images (Supplementary
Video 1). During the initial growth phase, cells were grown
either in the absence of or with a very low TMG concentration
(5mM; see Supplementary Information S3, Supplementary
Table S1 and Supplementary Figure S3). After 5–6 generations,
TMG (29 mM) was introduced into the flow (time tI) and
maintained until the end of the experiment. We followed
the yellow fluorescence of individual cells through time
(Figure 2B) and both cyan and yellow fluorescence images
were taken at time tI (Supplementary Figure S4). At this time,
cells exhibited an overall weak fluorescence, yet with obvious
variations between cells (Figure 2A, inset). The variations in
CFP and YFP expression were highly correlated (Supplemen-
tary Figure S4). Upon TMG introduction, two types of
cell responses were observed, where fluorescence intensity
increased either strongly or slightly (Figure 2B and C). After
two divisions, the fluorescence of most cells seems close to
reaching an equilibrium (Figure 2B), of either strong or weak
intensity (Figure 2A and C; Supplementary Information S1).

The resulting fluorescence distribution is thus bimodal and a
fluorescence threshold can be defined (see Materials and
methods) to assign to each cell its most probable induction
state (Figure 2C).

It is worth noting that we study a regime of transient
bimodality of the population, as opposed to the more
classically studied regime where the population exhibits a
stationary bimodality (Ozbudak et al, 2004) (Supplementary
Information S1). In the latter, at the population level, the
switching rate from ‘off’ to ‘on’ state is compensated by the
growth rate differential between ‘off’ and ‘on’ populations,
cells expressing fully the operon bearing the metabolic cost of
this expression. Therefore, some cells constantly switch from
‘off’ to ‘on’ state but as the ‘on’ population grows more slowly,
the proportion of ‘on’ and ‘off’ cells can be stable. In our
experiments, to observe a statistically relevant number of
switching events (within the 2 h of induction window available
in our experimental setup, limited by second layer micro-
colony growth and out sizing of the microscope field), we use
induction conditions leading to a high switching rate. Under
these conditions, at the population level, the bimodality is
transient as the switching rate is too high to be compensated by
growth rate differential (Supplementary Figure S1). Never-
theless, at the single-cell level, this regime is a true bistable
regime where a cell can either be in a low or high equilibrium
level of expression, as demonstrated by the transient
bimodality (Figure 2C; Supplementary Figure S5) and the
saturations approached by individual cell fluorescence traces
after 2 h of induction (Figure 2B, red and green lines).

Epigenetic inheritance of cell fate determinants

We used the phase contrast images of the time-lapse movies to
identify each and every cell of the growing colonies (Lindner
et al, 2008), and measured their mean yellow fluorescence
level. This enabled us to reconstruct each microcolony lineage
‘history’ tree, containing both lineage information and yellow
fluorescence intensity as a function of time for all individual
cells (Figure 3A).

The TMG-induced fluorescence propagates through the
lineage. Clusters of highly fluorescent cells in which the lac
operon is induced are clearly observed (red lines in Figure 3A).
Quantitative analysis of this clustering is depicted in Figure 3B.
For each cell present at time tI (TMG introduction), the
proportion of induced cells in its final progeny was calculated.
The distribution of these proportions exhibits two peaks at 0
and 1 (Figure 3B, left), suggesting that most of the initial cells
have in their progeny either almost only induced cells or
almost only uninduced cells. This bimodality is not created by
a specific distribution of the number of descendants per cell, as
concluded from a comparison with a distribution created by
random re-sampling (Figure 3B, right; Supplementary Infor-
mation S4), which is devoid of this bimodal characteristic.

The strong clustering of induced cells in the tree is indicative
of a substantial epigenetic inheritance in the system (Supple-
mentary Information S4). Once a mother cell switches and
begins to express the LacY permease, its progeny will inherit
the proteins and is likely to continue the switching process.
But in addition to this trivial epigenetic inheritance, the
molecular determinants of the response might also be
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Figure 2 Establishment of bimodality in microcolonies. (A) Fluorescent images
(YFP channel) of a microcolony of LCY1 just before TMG introduction (inset; high
light intensity) and 2 h after (low light intensity). (B) Fluorescence intensity of all
individual cells (black symbols) and mean fluorescence of the population (solid
yellow line) as a function of time. The green and red lines are representative
examples of single-cell trajectories. The dashed gray line indicates the time of
TMG introduction. (C) Distribution of YFP fluorescence of single cells 2 h after
TMG introduction (microcolony shown in (A)) fitted with a mixture of two Gaussian
distributions (in red) by the ‘mclust’ function of the R software. The solid black line
indicates the minimal fluorescence a cell should exhibit to be considered as an
induced cell.
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inherited, leading to correlated switching decisions of non-
induced related cells. In support of this is the fact that the first
common ancestor of clusters often divides before introduction
of TMG (Figure 3A; Supplementary Figure S3, black circles).
To test the epigenetic inheritance of cell fate determinants, we

compared the responses of related cells before induction
(Figure 4). We found that sister cells whose mother divided
before TMG introduction exhibit a correlated behavior as the
mean fluorescence of the progenies are correlated (Spearman’s
rank correlation r¼0.61, P-value¼10�7; Figure 4B). Therefore,
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Figure 3 Epigenetic inheritance is evidenced by genealogical clustering of induced cells. (A) Typical ‘Lineage history tree’ established for the microcolony presented in
Figure 2A. Individual cells are plotted as horizontal lines where the color corresponds to fluorescence intensity (YFP channel) as a function of time (horizontal axis).
At division time, a vertical line is drawn to connect the mother cell and its two daughters. The dashed line corresponds to TMG introduction. The black circle indicates an
example of division of a cluster’s common ancestor before TMG introduction. (B) Distribution of proportion of induced cells in the cells’ progeny; on the left calculated
from the data and on the right calculated from random re-sampling of the data (the descendants of each ancestor are randomly drawn from the final cell population,
irrespective of their genealogy).
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some determinants of cell fate are epigenetically inherited and
lead to correlated switching decisions of sister cells. To see
how many generations this epigenetic memory can last, we
also compared the responses of cells sharing a more distant
common ancestor. To avoid statistical biases created by using a
cell several times (as it has for instance several cousins), we
compared the mean fluorescence of the progeny of two sister
cells drawn from the populations of mothers or grandmothers
of the cells present at TMG introduction (Figure 4A). We
found that the first cousins still exhibit a correlated
response (Spearman’s rank correlation r¼0.57, P-value¼10�7;
Figure 4B), whereas this correlation is lost among second
cousins (Spearman’s rankcorrelationr¼0.02, P-value¼0.9; Figure
4B, inset). Thus, it seems that there is a short-range memory in the
determinants of cell fate that lasts around two divisions.

LacI concentration influences switching
probability

Stochasticity in gene expression can be categorized into two
broad classes: extrinsic and intrinsic (Elowitz et al, 2002).
Extrinsic noise corresponds to fluctuations in the concentra-
tions of polymerases, ribosomes or regulatory factors that
would cause variations of expression of a given gene between
one cell and another but not between two identical genes in the
same cell. Intrinsic noise corresponds to stochasticity in the
molecular events involved in the transcription and translation
of genes and thus governs variation between the expression of
two identical genes in the same cell.

We estimated LacI concentration indirectly, from the
expression levels of the YFP and CFP genes. Thus, intrinsic
noise in expression of these genes could substantially reduce

the accuracy of our estimation. To minimize the effect of
intrinsic noise, we introduced a variable corresponding to the
arithmetical mean of the normalized yellow and blue fluor-
escence at time tI of TMG introduction (FI¼1/2(YFP//YFPSþ
CFP//CFPS; Supplementary Figure S4). Therefore, FI esti-
mates the correlated variations of YFP and CFP levels. To test
whether FI is a predictive factor of the subsequent switching
behavior, we divided the ancestors at tI into two groups
(Figure 5A), according to the proportion of induced cells in
their progeny. Ancestors having more than half of their
progeny induced have an expression level 50% higher (t-test
P-valueo0.001) than the other ancestors. Thus, cells exhibit-
ing a higher value of FI have a higher probability to switch.

The correlated variations in YFP and CFP levels have two
potential origins. It can derive either from a variation in the
global protein synthesis ability of the cell, based for example
on a variation in RNA polymerase or ribosome concentrations,
or from a variation in LacI concentration. Indeed, even a small
variation in active LacI concentration is likely to have an
impact on the fluorescence level controlled by PLlacO1, as this
level is continuously increasing when TMG concentration
increases between 0 and 12 mM (Supplementary Figure S1),
concentrations corresponding to the monostable non-induced
regime. Therefore, this promoter is very sensitive to variations
in active LacI concentration. To evaluate the relative impor-
tance of the two sources of fluctuations of FI, global and LacI
dependent, we repeated the same induction experiment with
the strain LCY2, carrying the CFP gene under the control of a
constitutive promoter (PR lambda promoter) and the YFP gene
under the control of PLlacO1 (as before). As CFP expression is
constitutive, its extrinsic variations stem only from global
sources, whereas YFP expression is in addition directly
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sensitive to the level of LacI in the cell. In agreement, in the
absence of induction, YFP expression is much more hetero-
geneous than CFP expression in LCY2 (Figure 5B; Supplemen-
tary Figure S7A): the noise in YFP level, defined as the ratio of
the standard deviation over the mean is 0.31, whereas the
noise in CFP level is only 0.14. Conversely, when fully
induced, YFP expression exhibits the same noise as CFP
expression (0.14), and YFP and CFP expressions are highly
correlated (Supplementary Figure S7B; Spearman’s rank
correlation r¼0.8, P-valueo10�10). This strong correlation
demonstrates that intrinsic noise in CFP expression is
limited and that CFP fluorescence is therefore a relevant
measure of global variations in protein synthesis ability. The
correlation is partially lost under repressed conditions

(Supplementary Figure S7A; Spearman’s rank correlation
r¼0.4, P-valueo10�10), due to the additional noise caused
in YFP expression by LacI repression. Therefore, under
repressed conditions, a substantial amount of the variations
in YFP expression is caused by LacI fluctuations. We used a
generalized linear model to analyze the respective influence of
CFP and YFP initial levels on the switching probability of a cell
(see Materials and methods for a description of the analysis).
We found that the initial YFP level was a better predictor of
the response of the progeny than initial CFP level. In the
generalized linear model, the coefficient for the corresponding
reduced centered variable was higher for YFP (2.9) and
statistically relevant (P-valueo10�5) as compared with the
CFP fluorescence (coefficient: 0.9; P-value40.05). From this
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analysis, we conclude that LacI cellular concentration is
influencing the probability of lac operon switching.

LacI concentration can act on switching
probability through the modulation of
LacY transcription burst sizes

LacI concentration at induction can directly affect the switch-
ing probability, by determining the level of inhibition of the lac
operon and thus the size of the minimal LacY burst that would
trigger induction. Alternatively, it can have an indirect effect
through the determination of LacY initial concentration: lower
cellular levels of LacI might result in more frequent or larger
bursts of LacY expression. In our system, the fluorescent
reporters monitor only the dynamics of the LacI-dependent
transcription initiation with no direct information on the
expression level of LacY. Moreover, the synthetic promoter
used to control the fluorescence expression is leakier than the
one of the lac operon. Therefore, to test whether high levels of
fluorescence before induction correspond also to high levels of
LacY, we assessed independently its concentration. Although
direct LacY level detection is not easily performed (Choi et al,
2008), quantification of the b-galactosidase enzyme encoded
by the lacZ gene within the same operon is straightforward
and should reflect the adjacent lacY expression level. Cells
grown without inducer were sorted according to their yellow
fluorescence into two subpopulations, differing in their mean
expression levels by a factor of 1.45 (see Materials and
methods). The b-galactosidase activity of the population
exhibiting the highest mean fluorescence was 50% higher
than that of the other population. A lower cellular level of LacI
is therefore correlated with a higher level of lactose operon
genes expression, as it may lead to either more frequent or
larger transcription bursts. Thus, the effect of LacI stochasti-
city on the lac operon switching probability may be mediated
at least in part through its control of LacY burst size or
frequency. From the molecular perspective, it seems rather
unlikely that LacI concentration would affect the frequency
of bursts, as a burst result from a unimolecular event of
dissociation of the repressor from its operator site. On the
contrary, the possible effect on burst size seems clear, as the
LacI association to its operator is concentration dependent.
Indeed, it was shown in Choi et al (2008) that the size of the
bursts directly depends on the TMG concentration in the
medium, through its effect on intracellular LacI activity. It is
thus likely that when the active LacI concentration is lower in
the cell, once the repressor is dissociated from the operators, it
takes a longer time for another LacI molecule to bind the
operator, which results in a larger transcription burst.

The lactose utilization network within the
physiological context: growth rate influences
cell response

To calculate the growth rate of a cell in the microscopy
experiments, we measured the length of the cell at every time
points using the image analysis software developed by Stewart
et al (2005). As the diameter of the cell is constant during
growth, the growth rate is given by an exponential fit to the

length over time (see Materials and methods). To test whether
growth rate has an impact on the switching decision of a cell,
we retrospectively divided the ancestors at time tI into two
groups, with respect to the proportion of induced cells in their
progeny. The initial growth rate is 15% smaller in the
subpopulation of ancestors that have more than half of their
final progeny induced when compared with their complemen-
tary subpopulation (t-test P-valueo0.01). This difference is
significantly larger (P-value¼0.05) than the difference in
growth rate caused by the cost of fully expressing the operon’s
genes (6% difference between uninduced and fully induced
cells under our conditions, in agreement with previously
published data (Dekel and Alon, 2005)). Thus, there is a
substantial correlation between the growth rate of a cell and
its decision to switch: slower growing cells have a higher
propensity to switch.

Low LacI concentration and slow growth
independently increase switching probability

We experimentally found two different variables correlating
with the switching probability: cells having a higher initial
fluorescence FI or exhibiting slower growth had a higher
probability to switch and thus a higher proportion of induced
cells in their progeny. Nevertheless, growth rate and FI could
be linked, for example if the growth rate influences the
intracellular concentration of LacI. In this case, the effect of
growth rate could be indirect and redundant with the effect of
LacI concentration (see Supplementary Information S5 for
further discussion). To quantify the proper effect of each
variable, we used a generalized linear model (see Materials
and methods). This statistical analysis has several major
advantages over a more classical correlation study. First, it
allows to disentangle the proper effect of each explanatory
variable when these variables are correlated. Indeed, the
model tests if when one variable is known, the knowledge of
the second one brings additional information. The effect of
each variable, independently of the other, can thus be
quantified. Second, the genealogical structure of the data is
taken into account in the model thus avoiding the biases that
would be created in a simple correlation study by the fact that
all ancestor cells do not have the same number of descendants.

The linear model confirms that the proportion of induced
cells in the progeny is positively correlated to FI

(P-valueo10�5; Supplementary Table S1A) and independently
negatively correlated to the growth rate (P-valueo10�4;

Supplementary Table S1A) and allows an estimation of the
switching probability as a function of these two variables
(Figure 5C). Our data shows that cells having more than half of
their progeny induced are clustered in a region of low LacI
levels (high FI) and small growth rates. Conversely, cells
having less than half of their progeny induced are clustered in a
region of high LacI levels and high growth rates (Figure 5C).
Likewise, the switching probability estimated with the general-
ized linear model is a decreasing function of initial LacI
concentration and growth rate. According to this estimation,
for a given growth rate, initial LacI content can vary the
switching probability from 0 to 1. Similarly, for a cell with an
initial fluorescence FI of 1, switching probability would vary
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from 60% for a low growth rate of 0.005 min�1 to 1% for a
high growth rate of 0.02 min�1. Using the model, the initial
fluorescence and growth rate of a cell allow us to predict if its
progeny will be as a majority induced or non-induced with a
93% accuracy. In all, 99% of the cells that have more than half
of their progeny induced are predicted to be in this category
and 60% of the others are correctly predicted to have less than
half of their progeny induced. Thus, the initial LacI concentra-
tion and growth rate are independent predictive factors
controlling the cell response upon induction.

A model of single-cell dynamics demonstrates the
effect of growth rate and LacI concentration on a cell’s
sensitivity to LacY permease transcription bursts

To investigate how the growth rate could directly influence the
decision of a cell to switch, we adapted the model of Ozbudak
et al (2004) to describe the lactose utilization network at the
single-cell level. As discussed above, LacI concentration may
act on switching probability through the modulation of LacY
bursts size. However, LacI concentration could also have a
direct effect in changing the cell’s sensitivity to a given LacY
burst. Our modeling approach also allowed us to investigate
whether the data are quantitatively compatible with such a
direct influence of LacI concentration.

The model consists in a system of three differential
equations governing TMG intracellular concentration and
LacY and YFP cellular concentrations (see Supplementary
Information S6). The third equation determining YFP con-
centration is used only for parameter estimation and we
therefore consider here only the two equations determining
TMG intracellular concentration (x; in dimensionless unit) and
LacY concentration (y):

dx

dt
þ by� mx ð1Þ

dy

dt
¼ a

1þ r�1
1þx2

� ðgþ mÞy ð2Þ

TMG enters the cell at a rate proportional to the permease
concentration (with a rate of TMG uptake per LacY molecule
b) and is depleted by dilution due to cell growth (van Hoek and
Hogeweg, 2007) (with a cellular growth rate m). Likewise, LacY
is diluted, and degraded in a first-order reaction with a rate g
(van Hoek and Hogeweg, 2007), and its production is an
increasing function of TMG intracellular concentration (see
Supplementary Information S6 for further information), with
maximal value a and minimal value a/r. The repression factor
r is a linear function of the cellular LacI concentration.

To model the cell-to-cell variations before induction, we
consider distributions in the three factors that we experimen-
tally determined to be involved in the switching decision.
Individual growth rate and LacI concentration are considered
as parameters (through m and r; see Supplementary Informa-
tion S6), whereas LacY initial variation is modeled as a
variation in initial conditions. The distributions were derived
from the microscopy experiments, and the other parameters of
the system were measured or calculated from additional
experiments (see Supplementary Information S6 for parameter
calculation; Supplementary Table S2 for parameter estima-
tion). The model does not include any adjustable parameter,
all parameters being measured or calculated from experi-
ments.

To investigate the influence of LacI concentration and
growth rate on the switching probability, we built bifurcation
diagrams, which show the possible equilibria of the system as
a function of LacI concentration (Figure 6A) or growth rate
(Figure 6B). In Figure 6A, the bifurcation parameter is the
repression factor r, which is linearly related to LacI concentra-
tion, and the growth rate is fixed. When r is smaller than a
minimal threshold (left dashed black line), there is only
one stable fixed point (blue line). Thus, there is only one
possible equilibrium for the cells, corresponding to an induced
state that is reached regardless of LacY initial concentration.
Likewise, if r is higher than a maximal threshold (right
dashed black line), the system exhibits only one stable fixed
point, corresponding to the non-induced state. When r is
between these two threshold values, the system exhibits
two stable fixed points and is driven by initial LacY
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Figure 6 Final states depend on LacI concentration and growth rate. (A) Bifurcation diagram as a function of repression factor r (equilibrium points of LacY as a
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concentration. Thus, for a given r in this range, if the initial LacY
concentration is high (above the black line), the cell will reach
the induced state, whereas if the initial LacY concentration is low
(below the black line), the cell will stay in the non-induced state.
Therefore, a cell can be in a monostable regime induced or non-
induced or in a bistable regime depending on its intracellular
LacI concentration. Furthermore, in the bistable regime, the
minimal LacY initial concentration necessary to induce the cell
(black line) increases with LacI concentration. The range of r
calculated from our experimentsis between 100 and 750. For this
range of r values, the cells can be either in the monostable-
induced regime or in the bistable regime.

Likewise, the effect of growth rate is shown in Figure 6B. It is
qualitatively similar to the effect of LacI concentration:
depending on its growth rate, a cell can be in a monostable
regime induced or non-induced or in the bistable regime.
Moreover, in the bistable regime, the minimal LacY initial
concentration necessary to induce the cell (black line)
increases with growth rate. The cellular growth rates observed
in our experiments range between 0.010 and 0.017 min�1. For
this range of values, the cells can be either in the monostable-
induced regime or in the bistable regime.

In our model, the protein production rate a is constant and
does not change with growth rate. What determines the growth
rate at the single-cell level is unknown, but its fluctuations may
be correlated to fluctuations in protein production rate. In
particular, it is known that at the population level, ribosome and
RNA polymerase concentrations change with growth rate
(Nomura et al, 1984; Bremer and Dennis, 1987; Klumpp and
Hwa, 2008). This property might be valid at the single-cell level
and consequently, we also did a bifurcation analysis in which the
parameter a was proportional to growth rate (a¼a0� m). The
effect of growth rate on switching probability is also valid in this
case (see Supplementary Figure S8A).

In our model, the growth rate acts through the dilution of
intracellular TMG and LacY permease, but we do not include
such a dilution effect for LacI. LacI is negatively autoregulated,
as the protein can bind to an operator site located at the end of
its own gene, leading to truncated transcripts. Because of this
autoregulation, the mathematical relationship between
growth rate and LacI concentration is unknown. Nevertheless,
when simple LacI dilution is modeled without taking the
autoregulation into account, the negative influence of growth
rate on switching probability still holds (see Supplementary
Figure S8B). In addition, negative autoregulation has been
shown to provide stability and increased robustness to
fluctuations in biochemical parameters (Becskei and Serrano,
2000). It is thus expected to decrease the sensitivity of LacI
concentration with respect to fluctuations in growth rates, and
therefore the dilution effect.

Thus, according to our model, both LacI concentration and
growth rate have a strong influence on the size of the smallest
LacY burst required to trigger induction. Therefore, they both
control the sensitivity of a cell to a given LacY burst.

Discussion

We designed a microfluidic setup (Figure 1B) allowing to
follow single cells growing in microcolonies under a dynami-

cally controlled environment. We used this device to study the
formation of phenotypic variability in bacterial microcolonies
upon induction of the lactose operon in a bistable regime. The
genealogical context of the cells indicates that closely related
cells show a correlated behavior upon induction (Figure 3).
In particular, the responses of sister cells and first cousin cells
are substantially correlated (Figure 4). As this correlation is
lost between second cousin cells, the epigenetic memory of cell
fate determinants seem to be on the order of two generations.
A similar phenomenon of epigenetic inheritance was found in
a stochastic switch between two epigenetic states in the yeast
Saccharomyces cerevisiae (Kaufmann et al, 2007), where it was
suggested to be the consequence of bursts in expression of a
regulatory protein. In the model developed by Kaufmann et al
(2007), for the same average level of the regulatory protein, a
higher burst size leads to a stronger correlation between
related cells. After division of a cell, as long as no burst has
occurred in any of the daughter cells, the behavior of these
cells should stay highly correlated. As the burst size increases,
the period between bursts increases, leading to longer periods
of correlated behavior between related cells. Similarly, bursts
in LacYor LacI expression could both explain the epigenetically
inherited switching pre-disposition in our system. Nevertheless,
correlated behavior between related cells could also emerge
from inheritance of physiological parameters. As growth rate has
an influence on the cell’s response and growth rate between
related cells are correlated (for sister cells, Spearman’s rank
correlation r¼0.7, P-valueo10�10), the observed inheritance
could as well be due to an inheritance of the global physiological
state revealed by cellular growth rate.

We found pre-disposing factors of the lactose operon
switching, under conditions of transient bimodality of the
population (Figure 5). Pre-dispositions in cells response have
already been studied in eukaryotic systems (Cohen et al, 2008)
as well as in prokaryotic systems, in particular in two other
model systems of bistability, the lambda phage lysis/lysogeny
decision and the sporulation process in B. subtilis. In B. subtilis
sporulation, epigenetic inheritance lasting up to two genera-
tions was found but no pre-disposing factors could be
determined (Veening et al, 2008). Interestingly, in the lambda
lysis/lysogeny decision, it has been shown that the size of
the cell before infection was a strong predictor of cell fate
(St-Pierre and Endy, 2008).

Together, our experimental and theoretical approaches
suggest that LacI concentration acts both directly on LacY
transcription bursts size and indirectly on the cell’s sensitivity
to these bursts in presence of TMG. LacY transcription bursts
are triggered by the dissociation of the repressor molecule
from the operator site of the promoter. Once this dissociation
has happened, transcription can take place until a new LacI
molecule binds to the operator. If the active LacI concentration
is high, this binding of a new molecule is likely to happen
sooner than for a low repressor concentration. Thus, the
transcription period and therefore the size of the burst are
expected to be negatively correlated to the cell’s LacI content.
A cell with a low LacI content is therefore expected to have a
higher LacY content independently of the presence of inducer
in the medium. But the repressor concentration could also
act on the sensitivity to a given LacY concentration in the
presence of TMG. Indeed, once a LacY burst occurs, some
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TMG molecules enter the cell. If the number of active LacI
molecules inside the cell is low, their depletion through their
binding to TMG molecules is expected to be more dramatic. In
this case, active LacI depletion could in turn lead to increased
LacY burst size or even frequency if a free TMG molecule
manage to bind to the repressor bound to DNA and cause its
dissociation from DNA.

Variability in LacI and LacY concentrations can emerge from
stochasticity in genes expression at the local level of the lactose
utilization network. We also found that phenotypic variability
at the more global level of the cell’s physiology has a function
in a cell’s decision to switch on the lactose operon. Indeed, the
growth rate of a cell is a predictor of its subsequent response
upon induction, slowly growing cells being more readily
induced than faster growing cells (Figure 5). According to our
model, the fact that a fast-growing cell dilutes its molecular
content, in particular its intracellular inducer, faster than a
slow-growing cell could be sufficient to explain the negative
correlation between growth rate and switching probability.
Thus, based on experiments and modeling, we found that local
stochasticity in gene expression at the network level and global
physiology synergistically determine the single-cell responses.
Therefore, both our results and the results of St-Pierre and
Endy (2008) show that to fully understand the dynamics and
properties of a particular network, it is of great importance to
consider its embedding in the whole cellular physiology.

The growth rate of a bacterium directly reflects its fitness
and adaptation to the environment. Thus, the lactose operon
may offer an example of a fitness-dependent switching
mechanism, where cells that have a slower growth rate and
consequently a lower fitness are more susceptible to switch-
ing. A mechanism of fitness-dependent epigenetic state
determination was recently proposed and studied in a
synthetic bistable switch (Kashiwagi et al, 2006). In that
study, it was suggested that without any signal transduction
and sensing machineries, a cell could adapt to its environment
by a mechanism named fitness-induced attractor selection.
According to this model, when the cell is in a non-adaptive
state, the metabolism is lowered and the effect of stochasticity
in gene expression is increased, which renders the non-
adaptive state unstable. However, in our data, there is no
difference in expression variability between cells of smaller
versus bigger growth rates (see Supplementary Information
S7). Contrary to this mechanism, we propose that in the
lactose operon bistable switch, the effect of growth rate on
cell response to the inducer is based on the network
architecture and on the dilution rates of the molecules
involved. The lactose utilization network includes a sensing
and signaling machinery. However, in conditions of bistability,
the epigenetic state of the cell is no longer determined by the
external conditions, and the switching probability seems to be
influenced by growth rate, demonstrating a fitness-dependent
epigenetic determination. A mechanism where the slowly
growing, less fit cells could more readily change their genetic
expression, thus exploring the space of epigenetic states
to optimize their fitness, could promote the adaptation of
genetic expression to the environment. Growth rate would
thus be used by the cell as a measure of environmental
adaptation quality. In particular, in the case of the lactose
operon, a slow-growth rate may indicate a poor nutrient

utilization capacity, hence the benefit of expressing alternative
nutrient utilization systems.

The major difference between the transient bimodality
under study and the stationary bimodality classically studied is
at the population level and not at the single-cell level
(see above). Indeed at the single-cell level, both regimes are
characterized by the existence of two equilibrium states, ‘on’
and ‘off’, and a transition probability from ‘off’ to ‘on’ state.
Nevertheless, as we use a high inducer concentration leading
to a high transition probability, the mechanisms of switching
could be different from those acting in the low switching
rate conditions (lower inducer concentration). According to
our model, the effects of LacI concentration and growth rate
on the switching probability should not depend on inducer
concentration and therefore can reasonably be expected to
concern also the common regime of stationary bimodality. In
this regime, some rare but important events like errors in
LacI transcription have been shown to trigger induction
(Gordon et al, 2009). This phenomenon can be seen as an
extreme case of the effect of LacI concentration on the
switching probability.

The different regimes under which the bimodality of the
population is stationary or only transient are therefore both
regimes of bistability (meaning existence of two equilibrium
states), with low or high switching rates. The transiently
bimodal regime could be of greater biological relevance, as it is
leading to a highly variable response on a short-time scale.
With a lower switching rate, the variability can be maintained
stably in the population but its formation requires that the cells
grow exponentially in a constant environment on a long time
scale (Ozbudak et al, 2004), conditions that E. coli is unlikely
to meet in its natural environment.

Materials and methods

Bacterial strains and culture conditions

The two strains used in this study are constructed from the M22
(MC4100 galKHPLlacO1-CFP intCHPLlacO1-YFP) and MRR (MC4100
galKHlPR-CFP intCHlPR -YFP) strains (kind gift from Elowitz et al
(2002)) by P1 transduction into MG1655. The strain LCY1 is MG1655
galKHPLlacO1-CFP intCHPLlacO1-YFP and the strain LCY2 is MG1655
galKHlPR-CFP intCHPLlacO1-YFP. intC and galK are located on the
chromosome symmetrically from the origin of replication (Elowitz
et al, 2002).

Cells were grown in M9 minimal medium supplemented with
succinate (0.4%), casamino acids (0.01%), MgSO4 (3 mM), thiamine
(30 mM), and uracil (10 mM), at 301C with agitation. For microscopy
experiments, overnight cultures were first diluted 1000-fold into 5 ml of
fresh medium. Four hours later, the exponentially growing cells were
diluted 20-fold and inoculated into the microfluidic device.

Microfluidic device fabrication and use

Soft lithography was used to fabricate the mould for the channels of
300 mm width and 110 mm height cast in PDMS (see Supplementary
Information S2 for fabrication).

The agarose gel (1.5 wt%) was prepared as follows: a desired weight
of agarose powder (Qbiogene, QA-Agarose TM) was added to the
succinate Minimal Medium whose exact composition is described
above. The mixture was boiled to dissolve the agarose, and allowed to
cool to 451C. A drop of this solution was placed in a mould (height
130 mm) preheated at 451C and covered with a glass slide.
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The microfluidic device was assembled as follows: after cooling
down to room temperature, the agarose slab was carefully peeled off
from the mould, and 3ml of bacterial solution was deposited on the top
of the agarose slab. After total liquid absorption, the agarose slab was
placed on a cover slide (freshly treated with air plasma) to confine
bacteria between the activated glass slide and the agarose slab. The
freshly plasma-activated PDMS device was then bound to the glass
slide to get the microfluidic channel in the central part of the agarose
slab. After 15 min at 301C, the bond between PDMS and glass was
strong enough to support the pressure of the flow through the
microchannel.

Microscopy and image analysis

The microfluidic setup was placed in a temperature controlled (Life
Imaging Services GmbH Cube and Box) automated inverted micro-
scope (Zeiss Axiovert 200 M) at 301C. Up to four fields located under
the microfluidic channel and containing a single cell were identified
and followed by automated time-lapse acquisition (MetaMorph
microscope control software, Universal Imaging), as described earlier
(Stewart et al, 2005; Lindner et al, 2008), with minor modifications
(see Supplementary Information S3.2).

The custom analysis software (BHV) (Stewart et al, 2005) was used
to identify and follow the cells and reconstruct their lineage using the
phase contrast images (Lindner et al, 2008) and measure their
fluorescence (average of pixel intensity) through the induction
experiment. Growth rates were determined by an exponential fit to
the cells’ length over time. Calculation of growth rate at induction was
limited to not more than 10 min after TMG introduction (time window
in which the increase in fluorescence is not detectable) to avoid bias
from lower growth rate of induced cells.

Statistical analysis of the influence of chemical
noise and growth rate on switching probability

The final state of each cell (induced or non-induced) was assessed
from its yellow fluorescence intensity 2 h after TMG introduction.
Using the ‘mclust’ function of the R open source software, the final
fluorescence distribution was fitted with a mixture of two Gaussian
distributions, thus allowing the definition of a fluorescence threshold
above which a cell should be considered as induced.

We used a generalized linear model with a binomial distribution and
a logistic link to analyze the effect of different variables on the cell
switching probability. The number of cells induced in the progeny of
an ancestor cell is modeled as a binomial variable with parameters n,
the number of cells in the progeny, and p given by: p¼(eaxþ b yþ c)/
(1þ eaxþ b yþ c) with x¼(X�/XS)/sd(X) and y¼(Y�/YS)/sd(Y), X
and Y being the explicative variables. The use of the reduced centered
variables x and y allows comparing the respective influence of the
different explicative variables by comparing a and b.

Cell sorting and b-galactosidase assay

Bacteria were grown overnight at 301C then diluted 100-fold and
further incubated for 3 h at 301C. Cells were then placed at 41C and
sorted in two subpopulations with a cell sorter (FACS-Aria with Diva
software (Becton Dickinson)) according to their yellow fluorescence
intensity (the gate was set at the median fluorescence of the whole
population). After sorting, the two populations were composed of
20 000 000 cells each and showed a 45% difference in fluorescence.
A b-galactosidase assay was performed on each sorted subpopulation,
as described earlier (Miller, 1992). The activity was calculated from the
kinetics of o-nitrophenol production, based on four time points.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).

Acknowledgements
We thank Didier Chatenay and Stéphane Douady for advice and
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